# Cook’s Paper

Here is a nice pdf version of the famous paper by Steve Cook. Thanks to Tim Rohls.

2 Comments
leave one →

Here is a nice pdf version of the famous paper by Steve Cook. Thanks to Tim Rohls.

2 Comments
leave one →

%d bloggers like this:

The quest for a formula for nonpolynomial time is linked with abstraction logic theory IFF one takes the writings of the SilverProfessor KitFine OxonPress seriously. He states that

the most genuine of abstraction datums has to be a domain which is both Universal and restricted in its range. Also nb HandbookOfPhilOFMathsandLogic

I have found out the recent claimrePnotequaltoNP interesting. Ienjoyed solving the Cook number puzzle onWIKI re -2-3+15-10+7+14 on a topological basis to agree with the SilverProfessor suggestion in his official book It was a transitional datum I chose to establish after hard work the bisynthesis ie there are two ways one can prepare an impartial code to replace any set of numbers by another. One is complicated and requires the discovery of the Graft ie the oracle as you call it. The other is more formal and one can play

‘hotel rooms’with thes et of numbers. That is one has to add pairs from both the given and the devised set to check which pairs add the same So eventually you see the subset zero coincidentally isolated. However the other synthesis based ona concept of the restricted range dpoes not help like this It is disasterous There is no link at all with the WIKI set given So one has to use the Graft. It is still a computor hence Boolean programmable even though it is a requirement what the computor has to recoolect to say YES or NO. I have therefore proved that the datum is transitional. I only just found out that the papers by Cook do outline this would be so. OKAY THEN there is still the question what you regard is a sensible datum for the identity called recursive time.

I have today found a function which does away with the excessive computational work I admitted I got into. It is a function which permits one to express the output of a set whhich contaiins a possible sub-set zero so that the output is a near perfect demarcation. I tested it on the WIKI set example and others invented much more awkward to notice that this question by Cook about a function is to be found. After so much indirect work due to the

interest in Clay Inst 2003 book on trace harmonics etc I feel now that this is better than

the excessive computational work. I am able to understand why this works and that the mainline attempts require heavy logic. One of the sets invented for the purposes was allprimes and it was under 100 ea of 7terms. The function showed a difference with what I knew about the set. I cannot explain this formally because it was a two against two to zero in 7 terms which is high ratio for a zero sub-set. I knew something about one of the primes and left it out;adjusted the input to get another answer.This was now 1.85percent off the knowable balance for ewach of the two terms. I am wondering about the RH now;it must have some connection if you say so. So I am bound to write logic again I suppose. This Length is related to transitional appreciation. I hope friends of Cook reading this will be able to confirm his position is now the same and we have to share the logic papers re RH length I dont understand the need for a sequence at all. The sets can be presented any order to use this function re a RunTime hazard function as I call it. The difference within this particular set of primes to bal appears to have a connection with the N factors of a prime multiple which employs this particular prime It has few multiples within the special view that certain prime multiples are not acceptable for theoretical reasons. I have got to explain this sometime. They dont zero within themselves. Its cranky to most folk but I have tested statistically and its too hard for anyone generally without being involved with it. Clay says I should approach a aUniv and get a shared reln re these matters I am in UK and Oxon is not on the same thing.